

Development and Testing of the Tropospheric Trace Species Sensing FPI Prototype (TTSS-FPI)

Earth Science Technology Conference (ESTC)

June 28, 2006 University of Maryland University College

A. Larar, B. Cook, C. Mills, M. Flood, E. Burcher, & C. Boyer

NASA Langley Research Center

J. Puschell, Raytheon SBRS

W. Skinner, UM-SPRL

Topics

- Scientific Motivation
- Measurement/Instrument Concepts
- TTSS-FPI (IIP) Results
 - Program overview
 - Progress-to-date
 - Laboratory testing & data analysis
- Summary & Way-Forward

Science Motivation

- Tropospheric chemistry identified as key measurement area for future NASA Earth science missions (NASA SMD Strategic Enterprise and Science Research Plans)
- Tropospheric ozone (O₃) clearly recognized as one of the most important gas phase trace constituents in the troposphere
 - key oxidant in tropospheric photochemistry; O₃ photolysis is one of the principal sources of the hydroxyl radical (OH), the most important radical species associated with the photochemical degradation of anthropogenic and biogenic hydrocarbons
 - exposure to enhanced levels negatively impacts health, crops, and vegetation; O₃ is responsible for acute and chronic health problems in humans and contributes toward destruction of plant and animal populations
 - greenhouse gas; contributes toward radiative forcing and climate change
 - Levels have been increasing and will continue to do so as concentrations of precursor gases (oxides of nitrogen, methane, and other hydrocarbons) necessary for the photochemical formation of tropospheric O₃ continue to rise; there is evidence suggesting that average surface O₃ concentrations may have doubled over the last century
- Space-based detection of tropospheric ozone critical for enhancing scientific understanding & lessening impacts of exposure to elevated concentrations
 - spatially heterogeneous & high levels are not unique to urban areas; non-uniform sources/sinks & transport; enhanced tropospheric O₃ observed over the south tropical Atlantic Ocean

Measurement & Instrument Concepts

- Measurement Concept: Spectrally isolate pressure-broadened wings of strong 9.6 micron ozone lines to enable tropospheric ozone mapping from a geostationary-based platform
 - continuous day/night coverage independent of solar zenith angle
- Instrument Concept: Spatially imaging doubleetalon FPI system
 - LRE, HRE, & ultra-narrow filter in series configuration
 - spatial imaging with advanced FPA
 - active control loop for spectral tuning and parallelism control

FPI

(high throughput & spectral resolution)

+ Double-etalon + configuration (single-order transfer fcn)

GEO-based imaging system

(high space & time resolution; maximize SNR) Spectral isolation capability; minimize undesirable signal

contributions (interferent

species, surface, & clouds)

Etalon Characteristics

LaRC AtSC

Monochromatic Ray Propagation Through Simple FPI

- •Constructive interference produces transmission maxima at resonant wavelengths, yielding periodic transmission function
- *Additional etalons can be added in series to eliminate unwanted passbands, improve sideband rejection, and extend the effective FSR

- *Acquire spectral information by tuning spectroscopic variables: mechanical (t), pressure (u), and spatial (or angular, theta) scanning
- *Spectral & spatial variability across focal plane for imaging configuration

Airy function (ideal etalon) transmission

Formation of Single-Order Double-Etalon Transfer Function

Airy Transmission **Functions**

Instrument Incubator Program - IIP

Tropospheric Trace Species Sensing Fabry-Perot Interferometer (TT&S:FPI)

PI: Allen Larar / NASA Langley

Description and Objectives

Advance key technologies and demonstrate an integrated system for enabling cost effective remote sensing of the troposphere

Instrument uses a spectrally tunable imaging FPI to provide high spectral resolution over narrow spectral range

Space implementation focus on measurement of tropospheric ozone from Geo; Geo provides high temporal/spatial measurement capability

<u>Approach</u>

Develop airborne instrument prototype Perform testing, characterization, and demonstration [ground-based radiometric, spatial, spectral within IIP]

-Validate measurement concept/technologies

-Demonstrate autonomous operation

Process and analyze engineering and science data Define instrument concept for space-based sensor

<u>Partners</u>

CoIs:

Dr. William Cook, LaRC

Dr. Jeffery Puschell, Raytheon SBRS

Dr. Wilbert Skinner, U of Michigan

Integrated Sensor Approach -> cal/val •-> atm state •-> cost eff. T(p), $H_2O(p)$, T_s , Es Tropospheric O,

Schedule

Program start – Mar 02

Complete instrument assembly – Jan 06

Complete lab characterization and testing – 15 Mar 06

Complete space sensor concept study – Mar 06

Complete Final Report – Apr 06

Pursue ground-based & flight demo opportunities – FY06+

Applications/Mission

Future science objectives include O₃, CO, CO₂, N₂O and other tropospheric trace species; environmental monitoring, atmospheric chemistry, validation (GOES, ESSP, NPOESS)

LaRC

- Three technologies are required for TTSS-FPI within IIP to enable the **spectrally tunable imaging FPI** measurement technique for achieving high-resolution over narrow spectral ranges:
 - 1) precision control of etalon plates
 - a) to demonstrate accurate spectral tuning and parallelism control of the LRE and HRE; including piezo-electric actuators in a capacitance-based feedback system
 - 2) high-sensitivity two-dimensional infrared detector array
 - a) to demonstrate spatial imaging and required SNR; desire advanced materials for higher-sensitivity operation at warmer temperatures, with goal of reducing active cooling requirements, for space-based applications
 - 3) spectral and radiometric calibration
 - a) to demonstrate spectral registration and absolute intensity fidelity in radiance measurements; requires stable & narrow spectral emission character sources

Approach

Demonstration

1) & 3): quality spectra (independent spectral elements of proper resolution, SRF, and magnitude).

2): spatial imaging

Verification

simulation & intercomparison with other obs.

Instrument/System Initial Specifications

SD / SED

Instrument Parameter ^a	Airborne System ^b
Etalons	-
Diameter	~ 8 cm (6 cm active area)
Free Spectral Range (HRE, LRE)	1.52 cm^{-1} , 5.46 cm^{-1}
Scan Range (LRE/HRE)	~ 5 / 15 micron
NB filter	
Transmission characteristics	$3-5 \text{ cm}^{-1} \text{ FWHM}; \tau > 50\%; \sim \text{Gaussian shape}; 7-12 \text{ cm}^{-1} \text{ FW } 5\%$
FPA	
Format	160x160 (~40x40, effective)
Pixel Size	60 μm x 60 μm (~240 x 240 eff.)
Operating Temperature	35 – 65 K (~40K, nominal)
Effective D*	$\sim 3.0 E^{12} cm Hz^{1/2}/W$
Overall System	
Optical System Peak Transmittance	~0.35
Effective System Finesse	~ 20
Spectral Resolution	0.068 cm ⁻¹
Spectral Range	~ 1053.5 – 1056. cm ⁻¹
f/#	~ 3.0
Spatial Resolution ^c	~6.3/8.1 m (~25/32 m, eff.), ~1.0/1.3 km across FPA
Dwell Time per Spectral element	~0.26 s
Dwell Time per Spatial Sample	16 s for spectrum (~ 60 elements)
Coverage Time	1.76 km along a/c track in 16 s
Platform altitude	~ 16 km
Data rate/storage ^d	~ 2-20 MB/s / 60 GB (8hrs)
Instrument size (dewar + rack)	~35"h, 22"w, 42"d
a assumes NESR ~ 0.15 mW m ⁻² sr	.1
·	
	tal ones are fcn of obtainable FPA characteristics (i.e., D*, format, pixel size)
assumes 3.7 degree IFOV for full	FPA at Proteus (15.5 km)/ER-2 (20 km) altitudes

worst case range; nominal values TBD per frame averaging; further reduction from pixel binning

Technical Status Overview

- Subsystem- and psuedo-system-level (i.e. w/ HRE in dewar) testing has demonstrated several project enabling technologies
 - Etalon control & spectral fidelity at room/cryo temperatures
 - Encouraging <u>radiometric calibration</u> w/FPA </= 77K
 - <u>Imaging fidelity</u> @ nominal system cryogenic temperatures
 - Imaging FPI in dewar cryogenic environment
- Accomplished system-level testing in dewar prior to closure of IIP task (15 March 2006)
 - ILS characterization using CO₂ laser with HRE in dewar etalon assembly
 - w/o optimum cryogenic alignment / FPA illumination
- Initial alignment & FPA illumination issues have been resolved
 - cryogenically-induced alignment displacements are removed with new optical adjustment motors providing sufficient torque in dewar
 - Integrating sphere or beam diverging pre-optics provide extended source input

Lab Testing Approach

- Parallel lab testbed mitigates risk and ensures continued technical advancement
 - It's a slow, difficult process doing many of these tasks for the first time in a cryogenic environment
 - Bench level characterization testing continues, in parallel to dewar operations, with an independent measurement system (high-resolution laboratory FTIR, along with laser, BB, and solar sources)

- <u>Dewar:</u> ILS characterization across SCA, and to characterize etalon tuning & control in cryogenic environment
- Bench: ambient characterization of etalon SRF, etalon tuning & control (HRE, LRE, & both in series)

Select Key Test Results...

Radiometric Calibration Testing (Mar 2005)

LaRC SD/SED

BB T vs measured counts

- Derived calibration equations for each pixel
 - LSQ fit to BB temperature vs measured counts relationships for each of the 25,600 pixels

Elliptical Gaussian Modeling of Sunlook Imaging Test Data (091405)

LaRC

SD / SED

Hallway Imaging Tests (082605)

Solar Spectra (17 Oct 2005)

Etalon characterization testing with BB/FTIR: LRE example

Post-test analysis infers etalon properties to best fit measured test data

Capacitance Repeatability Test (03/3-6/06) LaRC SD/SED Repeat-1 (voltage): State-1: State-2:

Capacitance Scan Test (030706)

HRE passbands

Since repeatable with capacitance (spectral position & finesse), such data will be used to derive wavenumber vs capacitance relationships for "spectral calibration"

Development and Testing of the Tropospheric Trace Species Sensing FPI Prototype, ESTC 2006, 06/28/06, Larar et al.

Movie of PZT scan of CO₂ laser source (031506)

LaRC

Spectral fringes visible in time-varying signal portion of illuminated pixels!

Deviation from centered, full-circular ring pattern caused from:

Mis-aligned etalon plates & parasitic energy reflections & deviation from circular & offsets

Original data (max signal = min counts)

Intense laser signal transmitted through FPI bandpass wings, saturating local pixels

Non-AR-coated dewar window **£** ghost images

Effective Finesse Approximation from SD/SED Cryogenic PZT Scan Test (031506)

$$N_e = FSR / FWHM \sim (47.56-13.64)/(18.68-13.48) = 6.52 \sim N_e$$

Ambient lab values have ranged from ~ 6-14, as fcn of etalon alignment

Dewar-derived value very representative of expected etalon finesse after cryogenically-induced misalignment

PZT cryogenic scan distance estimation (031506)

Distance moved / FSR ~ (36.92-15.11)/(58.92-15.11) = 0.497832

~1/2 PZT range expected at cryogenic operation vs lab for same ΔV

5000 counts in lab ~ 1 FSR range

dewar test changed same amount of volts and got the expected $\sim \frac{1}{2}$ FSR motion

Scaling observed PZT scan distance SD/SED

LaRC

~ 0.5 \(\Delta\)d observed in dewar data

 \pm 2.4 micron movement (15 V Δ PZT)

100 V PZT range Ł 6.67*2.4 micron

~ 16 micron full-range estimated

 $n\lambda = 2 d \mu \cos \theta$

Fringe at specific FPA location whenever gap changes by

$$\Delta d = \lambda/(2\mu \cos\theta) \sim \lambda/2$$

$$[\lambda_{laser} = 9.473 \ \mu \ (1055.63 \ cm^{-1})]$$

 $\triangle \Delta d = 4.7365$ micron Change in PZT gap needed to change fringe order at specific FPA pixel

43 micron observed @ ambient

~ 21.5 micron expected in dewar

~ 75% achieved (from linear extrapolation) **∆V/∆PZT** is known to be nonlinear

ballpark cryogenic PZT motion from observed PZT-scan-induced spectral fringes

Spectral Fringe "Proof"

- Moving fringe pattern observed with ΔPZT while viewing monochromatic source
- Upon changing CO₂ laser lines, spatialpositioning of fringe pattern changed on FPA
- Etalon & PZT characteristics derived from HRE/dewar-induced fringes comparable to those derived in bench-level ambient testing
 - $-N_{\rm e}$
 - PZT scan response
- Demonstrates existence of imaging FPI!

H/W / setup mods since IIP "closure" SD/SE

- PZTs worked in dewar on 15 March, but motors not operable (insufficient torque & lubricants not functional at cryogenic temps; no ability to align) and did not have any measure of capacitance (i.e. no proof of repeatability in dewar). Also, FPA was only partially illuminated.
 - [Aside: PZT stacks designed to provide needed spectral scan displacement, but not extra for initial alignment; i.e., ~ 45 micron motion @ room temperature, and ~ 1/2 distance @ 77K in dewar]
- Purchased non-cryogenic-rated motors with required torque and converted to enable cryogenic operation
 - removed all bearing seals & lubricants and degreased all parts using ultrasonic cleaning. Qualified motors by submerging in liquid nitrogen bath. Cryogenic performance demonstrated within dewar
- Cryogenic capacitance monitoring enabled by altering capacitor spacings to match dynamic range of PZT motion
- Full-FPA illumination achieved using integrating sphere or diverging lens in pre-optics

First full-FPA illumination of monochromatic source (22 May)

- used integrating sphere for "extended source"
- warm (77 K) operation resulted in weak target signal relative to other parasitic components, but did show complete spectral fringes in dewar!

for pos-8

Etalon properties from neighboring fringes: higher signal test (7 June)

- w/o integrating sphere; lens used to diverge beam and illuminate entire FPA
- **Shows:**
 - multiple superimposed fringe patterns (spectral & spatial)
 - optical mis-alignment

Radial x-section

for pos-10

Difference images of two laser lines observed at sp/se select *same* capacitance positions (7 June)

[Viewing 2 lines enables etalon spectral property determination from single image]

Spectral properties are repeatable (9 June)

LaRC SD/SED

Similar characteristics as observed during 7 June testing

Fringe pattern characteristics before/after centering (9 June)

Development and Testing of the Tropospheric Trace Species Sensing FPI Prototype, ESTC 2006, 06/28/06, Larar et al.

LaRC SD/SED

Difference images of two laser lines observed at select *same* capacitance positions (9 June):

centered fringe pattern

Strong line - weak line

Strong line

position

Radially smoothed (Strong line – weak line)

3.4432=n*fsr + / - dv ½ FSR = (3.4432 +/- dv)/n, n=1,2,3,...

Pos-2: fsr = (3.4432 + 0.44)/3 = 1.294 cm-1

Pos-6: fsr=(3.4432 + 0.37)/3 = 1.271 cm-1

AVG= 1.283 cm-1 (0.23% > "truth")

weak line Strong line position position

weak line position

TTSS-FPI fringe pattern evolution

Technology Demonstration Status

Radiometric calibration

 Radiometric calibration methodology fidelity has been demonstrated in the cryogenic dewar environment by using cold, thermally-stable FPA measurements of known target temperatures to show radiometric calibration transforms measurements to expected scene temperatures with greatly reduced pixel-variance over uniform scenes. (Calibration-target & hallway tests)

Spatial imaging

 Spatial imaging fidelity has been demonstrated in the cryogenic dewar environment by FPA-inferred spatial sizes matching known-target dimensions (sun-look & hallway tests)

Spectral tuning

 Spectral tuning fidelity has been demonstrated in the ambient lab and cryogenic dewar environments by being able to precisely repeat desired spectral characteristics via etalon gap control (sun-look, capacitance repeatability, PZT & motor scan tests)

Way Forward

- Technical advancement
 - autonomous tuning & control
 - Capacitance feedback system
 - Image quality & radiometric crosstalk
 - stray light reduction
 - AR-coated dewar window
 - Additional baffling/optical elements or tilting to minimize impact of undesired reflections-induced spatial/spectral parasitic energy
 - Implement double-etalon SRF
 - Insert LRE in etalon assembly
- Demonstrations
 - Lab testing/characterization (including atm/solar views)
 - Consider field deployment(s), aircraft implementation
- Program infusion
 - ESSP (SMD)
 - External applications (DOD, IC, etc.)

Conclusion

- **Tropospheric ozone is a HIGH-PRIORITY measurement in the NASA SMD Strategic Enterprise and Science Research Plans**
- **TTSS-FPI** concept enables new multispectral imaging measurement capability for space-based observation of tropospheric ozone
- **Exploits spatial and temporal benefits of GEO-imaging (e.g. monitoring of regional pollution episodes)**
- Instrument concept and technologies also have broad-based applicability to measurement of other geophysical parameters (passive & active)
- **S** Hybrid instrument implementations (e.g. FPI + FTS) can greatly simplify sensor designs where high spectral resolution is needed in only select spectral regions
- **Instrument system (TTSS-FPI) development within NASA's IIP has demonstrated an advanced atmospheric remote sensor concept & technologies intended for geostationary-based measurement of tropospheric O₃**
 - § Imaging cryogenic FPI has been demonstrated
 - Very encouraging Radiometric, spatial, and spectral performance has been characterized